Respuesta :

Answer:

vertex = (- 1, - 4.5 )

Step-by-step explanation:

Given

f(x) = [tex]\frac{1}{2}[/tex] (x - 2)(x + 4)

The vertex lies on the axis of symmetry which is positioned at the midpoint of the zeros.

To find the zeros let f(x) = 0, that is

[tex]\frac{1}{2}[/tex] (x - 2)(x + 4) = 0

Equate each factor to zero and solve for x

x - 2 = 0 ⇒ x = 2

x + 4 = 0 ⇒ x = - 4

The x- coordinate of the vertex is therefore

x = [tex]\frac{-4+2}{2}[/tex] = [tex]\frac{-2}{2}[/tex] = - 1

Substitute x = - 1 into f(x) for corresponding y- coordinate

f(- 1) = [tex]\frac{1}{2}[/tex] (- 1 - 2)(- 1 + 4) = [tex]\frac{1}{2}[/tex] × - 3 × 3 = 0.5 × - 9 = - 4.5

Coordinates of vertex = (- 1, - 4.5 )