Respuesta :

Answer:

[tex]x=2[/tex]

Step-by-step explanation:

B is the midpoint of AC so AB = BC.

AB + BC = AC

AB + AB = AC

2(AB) = AC

[tex]2\left(3\left(3x-1\right)\right)=5\left(2x+2\right)[/tex]

Expand:

[tex]2\times3\left(3x-1\right)=5(2x+2)[/tex]

[tex]6\left(3x-1\right)=5(2x+2)[/tex]

[tex]6\times3x-6\times1=5\times2x+5\times2[/tex]

[tex]18x-6=10x+10[/tex]

Add 6 to both sides:

[tex]18x-6+6=10x+10+6[/tex]

[tex]18x=10x+16[/tex]

Subtract 10x from both sides:

[tex]18x-10x=10x+16-10x[/tex]

[tex]8x=16[/tex]

Divide both sides by 8:

[tex]\frac{8x}{8}=\frac{16}{8}[/tex]

[tex]x=2[/tex]

Answer:

[tex]x=2[/tex]

Step-by-step explanation:

First, we know that the entire segment adds up to 5(2x+2). In other words:

[tex]AB+BC=5(2x+2)[/tex]

Now, since B is the midpoint of AC, by the definition of midpoint, AB and BC are equivalent. So:

[tex]AB=BC[/tex]

Since we know that, let's substitute BC for AB in the first equation:

[tex]AB+BC=5(2x+2)\\[/tex]

This is equivalent to:

[tex]AB+AB=5(2x+2)[/tex]

Combine like terms:

[tex]2AB=5(2x+2)[/tex]

And since we know that AB is 3(3x-1), substitute:

[tex]2(3(3x-1))=5(2x+2)[/tex]

Now, solve for x.

Distribute the left side:

[tex]6(3x-1)=5(2x+2)[/tex]

Distribute both sides:

[tex]18x-6=10x+10[/tex]

Add 6 to both sides:

[tex]18x=10x+16[/tex]

Subtract 10x from both sides:

[tex]8x=16[/tex]

Divide both sides by 8:

[tex]x=2[/tex]

So, the value of x is 2.

And we're done!

Notes:

You didn't particularly state what you need to find. If you want to length of AB or BC, it would be:

[tex]AB=BC=3(3(2)-1)=15[/tex]

And the entire length AC is:

[tex]AC=2(15)=30[/tex]