Respuesta :

Answer:

1436.8 in³ (nearest tenth)

Step-by-step explanation:

A globe is in the shape of a sphere.

[tex]volume \: of \: sphere = \frac{4}{3} π {r}^{3} [/tex]

Diameter= 2 ×radius

radius of globe

= 14 ÷2

= 7 inches

Volume of globe

[tex] = \frac{4}{3} π {(7}^{3} ) \\ = 1436.8 \: in^{3} \\ (nearest \: tenth)[/tex]

Step-by-step explanation:

  • We have given that diameter of globe (sphere) is 14 inches,Then it's radius is 14/2 = 7 inches :]

To find the volume of sphere we have to use the given below formula :]

[tex] \boxed {\underline{ \underline{\bigstar\:\: \sf Volume \: of \: sphere = \dfrac{4}{3} \pi r^3 \: \: \bigstar}}} \\ \\ [/tex]

☯ [tex]\underline{\boldsymbol{According\: to \:the\: Question\:now :}} [/tex]

[tex]:\implies \sf Volume \: of \: sphere = \dfrac{4}{3} \times 3.14 \times 7 \times 7 \times 7 \: \: \bigg \lgroup \bf{putting \: \pi = 3.14} \bigg \rgroup \\ \\ [/tex]

[tex]:\implies \sf Volume \: of \: sphere = \dfrac{4}{3} \times 3.14 \times 343 \\ \\ [/tex]

[tex]: \implies \underline{ \boxed{ \sf Volume \: of \: sphere = 1436.0267 \: cubic \: inches}} \\ [/tex]