Respuesta :

Answer:

The area of surface is [tex]\dfrac{2}{3}(10^{\frac{3}{2}}-1)\pi[/tex]

Step-by-step explanation:

Given that,

The equation of cylinder is

[tex]x^2+y^2=9[/tex]

The part of the surface z = xy

The coordinates is,

[tex]z_{x}=y[/tex]

[tex]z_{y}=x[/tex]

We need to calculate the value of ds

Using formula of ds

[tex]ds=\sqrt{1+z_{x}^2+z_{y}^2}dA[/tex]

Put the value in to the formula

[tex]ds=\sqrt{1+y^2+x^2}dA[/tex]....(I)

We know that.

The polar coordinates,

[tex]x=r\cos\theta[/tex]

[tex]y=r\sin\theta[/tex]

The general equation of cylinder is

[tex]x^2+y^2=r^2[/tex]

compare from given equation

[tex]x^2+y^2=3^2[/tex]

0<=θ<=2π, 0<=r<=3

Area element in polar coordinates is,

[tex]dA=r dr d\theta[/tex]

Put the value of dA in equation (I)

[tex]ds=\sqrt{1+r^2}r dr d\theta[/tex]....(II)

We need to calculate the area of surface

Using equation (II)

[tex]s=\int_{0}^{2\pi}\int_{0}^{3}\sqrt{1+r^2}r dr d\theta[/tex]

[tex]s=\int_{0}^{2\pi}\dfrac{1}{3}((1+r^2)^{\frac{3}{2}})_{0}^{3}d\theta[/tex]

[tex]s=\int_{0}^{2\pi}\dfrac{1}{3}((1+3^2)^{\frac{3}{2}}-(1+0^2)^{\frac{3}{2}})d\theta[/tex]

[tex]s=(\dfrac{1}{3}((10)^{\frac{3}{2}}-1)\theta)_{0}^{2\pi}[/tex]

[tex]s=\dfrac{1}{3}(10^{\frac{3}{2}}-1)(2\pi-0)[/tex]

[tex]s=\dfrac{2}{3}(10^{\frac{3}{2}}-1)\pi[/tex]

Hence, The area of surface is [tex]\dfrac{2}{3}(10^{\frac{3}{2}}-1)\pi[/tex]