a) How long (in ns) does it take light to travel 1.0 m in a vacuum?
b) What distance does light travel in water, glass, cubic zirconia during the time it travels in 1.0 m vacuum?

Respuesta :

Answer:

a

      [tex]t  =  3.33 \  ns[/tex]

b

i      [tex]D_w  =0.75 \  m [/tex]

ii     [tex]D_g  =0.67 \  m [/tex]

iii     [tex]D_c  =0.46 \  m [/tex]

Explanation:

Generally the time taken to travel 1 m in a vacuum is mathematically represented as

       [tex]t  =  \frac{1}{c}[/tex]

Here c is the speed of light with value  [tex]c =  3.0*10^{8} \  m/s[/tex]

So  

          [tex]t  =  \frac{1}{3.0*10^{8}}[/tex]

          [tex]t  =  3.33*10^{-9} \  s[/tex]

         [tex]t  =  3.33 \  ns[/tex]

The distance light travels in water is mathematically represented as

         [tex]D_w  = \frac{c}{n_w}  *  t[/tex]

Here n_w  is the refractive index of  water with value 1.333

So

      [tex]D_w  = \frac{3.0*10^{8}}{1.333}  *  3.33*10^{-9}[/tex]

     [tex]D_w  =0.75 \  m [/tex]

The distance light travels in glass is mathematically represented as

       [tex]D_g  = \frac{c}{n_g}  *  t[/tex]

Here n_g  is the refractive index of  glass with value 1.5

So

      [tex]D_g  = \frac{3.0*10^{8}}{1.5}  *  3.33*10^{-9}[/tex]

     [tex]D_g  =0.67 \  m [/tex]

The distance light travels in cubic zirconia is mathematically represented as

       [tex]D_c  = \frac{c}{n_g}  *  t[/tex]

Here n_c  is the refractive index of cubic zirconia with value 2.15

So

      [tex]D_c  = \frac{3.0*10^{8}}{2.15}  *  3.33*10^{-9}[/tex]

     [tex]D_c  =0.46 \  m [/tex]

Otras preguntas