Respuesta :

Answer:

x = 5

AC = 6

DC = 8

Step-by-step explanation:

∆ABC ~ ∆CDE

Therefore, [tex] \frac{AB}{ED} = \frac{AC}{DC} [/tex]

AB = 3

ED = 4

AC = x + 1

DC = x + 3

Plug in the values and solve for x:

[tex] \frac{3}{4} = \frac{x + 1}{x + 3} [/tex]

Cross multiply

[tex] 3(x + 3) = 4(x + 1) [/tex]

[tex] 3x + 9 = 4x + 4 [/tex]

[tex] 3x - 4x = -9 + 4 [/tex]

[tex] -x = -5 [/tex]

[tex] x = 5 [/tex]

Plug in the value of x and find AC and DC

AC = x + 1 = 5 + 1 = 6

DC = x + 3 = 5 + 3 = 8