Answer:
Step-by-step explanation:
1.
[tex]4\sqrt{12}-\sqrt{50}-5\sqrt{48}\\\\4\sqrt{12}=8\sqrt{3}\\\\\sqrt{50}=5\sqrt{2}\\\\5\sqrt{48}=20\sqrt{3}\\\\=8\sqrt{3}-5\sqrt{2}-20\sqrt{3}\\\\\mathrm{Add\:similar\:elements:}\:8\sqrt{3}-20\sqrt{3}=-12\sqrt{3}\\\\=-12\sqrt{3}-5\sqrt{2}[/tex]
2.
[tex]\sqrt{8}\sqrt{5}\sqrt{10}\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{a}\sqrt{b}=\sqrt{a\times b}\\\\=\sqrt{8\times \:5\times \:10}\\\\=\sqrt{400}\\\\\mathrm{Factor\:the\:number:\:}\:400=20^2\\\\=\sqrt{20^2}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^n}=a\\\\\sqrt{20^2}=20[/tex]
3.
[tex]\sqrt{45}+\sqrt{180}+\sqrt{80}\\\\\sqrt{45}=3\sqrt{5}\\\\\sqrt{180}=6\sqrt{5}\\\\\sqrt{80}=4\sqrt{5}\\\\=3\sqrt{5}+6\sqrt{5}+4\sqrt{5}\\\\\mathrm{Add\:similar\:elements:}\:3\sqrt{5}+6\sqrt{5}+4\sqrt{5}\\\\=13\sqrt{5}[/tex]