Respuesta :

Answer:

[tex]\huge \boxed{\mathrm{D. \ 22}}[/tex]

Step-by-step explanation:

[tex]\mathrm{log_4 (x)=12}[/tex]

Make the base 4 from both sides.

[tex]\mathrm{4^{log_4 (x)}=4^{12}}[/tex]

Simplify the equation.

[tex]\mathrm{x=16777216}[/tex]

[tex]\mathrm{log_2 (\frac{x}{4} )}[/tex]

Let x = 16777216

[tex]\mathrm{log_2 (\frac{16777216}{4} )}[/tex]

[tex]\mathrm{log_2 (4194304)}[/tex]

Evaluate.

[tex]22[/tex]

Answer:

[tex]log_2(\frac{x}{4} )=22[/tex]

which is your answer "D"

Step-by-step explanation:

If    [tex]log_4(x)=12[/tex]  this means that : [tex]x=4^{12}[/tex] based in the definition of logarithm.

And this exponential expression can also be written using that [tex]4=2^2[/tex]:

[tex]x=4^{12}=(2^2)^{12}=2^{24}[/tex]

so now we know what x is with base 2 (which is needed for the second expression:

[tex]log_2(\frac{x}{4} )=?[/tex]

And this also can be written in exponent form (using the unknown "?" we need to find) as:

[tex]2^?=\frac{x}{4} \\x=4\,*\,2^?\\x=2^2\,*\,2^?\\x=2^{2+?}[/tex]

Since we know the value of x in base 2 (from our first analysis), then:

[tex]x=2^{2+?}=2^{24}\\then\\2+?=24\\?=22[/tex]

Therefore,

[tex]log_2(\frac{x}{4} )=22[/tex]