Respuesta :

Answer:

[tex]\frac{3}{13} i+\frac{11}{130} j-\frac{6}{65} k\\[/tex]

Step-by-step explanation:

Given A = 5i + 11j – 2k and B = 4i + 7k​, the vector projection of B unto a is expressed as [tex]proj_ab = \dfrac{b.a}{||a||^2} * a[/tex]

b.a = (5i + 11j – 2k)*( 4i + 0j + 7k)

note that i.i = j.j = k.k  =1

b.a = 5(4)+11(0)-2(7)

b.a = 20-14

b.a = 6

||a|| = √5²+11²+(-2)²

||a|| = √25+121+4

||a|| = √130

square both sides

||a||² = (√130)

||a||²  = 130

[tex]proj_ab = \dfrac{6}{130} * (5i+11j-2k)\\\\proj_ab = \frac{30}{130} i+\frac{11}{130} j-\frac{12}{130} k\\\\proj_ab = \frac{3}{13} i+\frac{11}{130} j-\frac{6}{65} k\\\\[/tex]

Hence the projection of b unto a is expressed as [tex]\frac{3}{13} i+\frac{11}{130} j-\frac{6}{65} k\\[/tex]