Respuesta :

Answer:

see explanation

Step-by-step explanation:

Assuming you require the derivative of f(x) from first principles, then

f' (x) = [tex]lim_{h>0}[/tex] [tex]\frac{f(x+h)-f(x)}{h}[/tex]

       = [tex]lim_{h>0}[/tex] [tex]\frac{\frac{1}{(x+h)}-\frac{1}{x} }{h}[/tex]

       = [tex]lim_{h>0}[/tex] [tex]\frac{\frac{x-(x+h)}{x(x+h)} }{h}[/tex]

       = [tex]lim_{h>0}[/tex] [tex]\frac{\frac{x-x-h}{x(x+h)} }{h}[/tex]

        = [tex]lim_{h>0}[/tex] [tex]\frac{-h}{hx(x+h)}[/tex] ← cancel h on numerator/ denominator

        =  - [tex]\frac{1}{x^2}[/tex]