Respuesta :
Complete question:
Some sources report that the weights of full-term newborn babies in a certain town have a mean of 9 pounds and a standard deviation of 0.6 pounds and are normally distributed.
Answer: 0.7497
Step-by-step explanation:
Mean = 9
sd = 0.6
n = 4
P(4 babies will be between 8.4 and 9.6 pounds)
P(8.4 ≤ X ≤ 9.6)
Standard error of the sample (S. E) :
S. E = sd/√n
= 0.6 /√4
= 0.6/2
= 0.3
P(8.4 ≤ X ≤ 9.6)= ((P(8.4 - 9) / 0.3) ≤ X ≤ (9.6 - 9)/0.3)
P(8.4 ≤ X ≤ 9.6) = P(-2 ≤ X ≤ 2)
P(Z ≤ 2) - P(Z < - 2)
0.9772 - 0.2275 = 0.7497
The probability will be "0.7497".
Given:
Mean,
- 9
Standard deviation,
- 0.6
Number of babies,
- 4
The standard error of sample will be:
→ [tex]S.E. = \frac{sd}{\sqrt{n} }[/tex]
[tex]= \frac{0.6}{\sqrt{4} }[/tex]
[tex]= \frac{0.6}{2}[/tex]
[tex]= 0.3[/tex]
hence,
→ P(4 babies will be between 8.4 - 9.6 pounds)
[tex]P(8.4 \leq X \leq 9.6) = (\frac{(8.4-9)}{0.3} \leq X \leq \frac{(9.6-9)}{0.3} )[/tex]
[tex]= P(-2 \leq X \leq 2)[/tex]
[tex]= P(Z \leq 2) - P(Z \leq -2)[/tex]
[tex]= 0.9772-0.2275[/tex]
[tex]= 0.7497[/tex]
Thus the above response is right.
Learn more:
https://brainly.com/question/14008215