Respuesta :

=> R.H.S

[tex] \frac{ \sin(4x) }{ \cos(2x) } = \frac{ \sin(2x + 2x) }{ \cos(2x) } [/tex]

[tex] = \frac{ 2 \sin(2x) \cos(2x) }{ \cos(2x) } [/tex]

[tex] = 2 \sin(2x) [/tex]

[tex] = 2(2 \sin(x) \cos(x) )[/tex]

[tex] = 4 \sin(x) \cos(x) [/tex]

R.H.S = L.H.S

PROVED!

Ver imagen MathFreak01

Answer:

Below

Step-by-step explanation:

● 4 sin(x) cos(x) = sin(4x)/cos(2x)

Let's prove that:

● 4 sin(x) cos(x) cos(2x) = sin(4x)

It's easier to prove it than the first one

■■■■■■■■■■■■■■■■■■■■■■■■■■

● 4 sin(x) cos(x) cos (2x)

● [2 sin(x) cos(x)] 2 cos(2x)

We khow that [2 sin(x) cos(x)]= sin(2x)

So:

● sin(2x) 2 cos(2x)

Based on the same relation

● sin(4x)

It's proved