Respuesta :
=> R.H.S
[tex] \frac{ \sin(4x) }{ \cos(2x) } = \frac{ \sin(2x + 2x) }{ \cos(2x) } [/tex]
[tex] = \frac{ 2 \sin(2x) \cos(2x) }{ \cos(2x) } [/tex]
[tex] = 2 \sin(2x) [/tex]
[tex] = 2(2 \sin(x) \cos(x) )[/tex]
[tex] = 4 \sin(x) \cos(x) [/tex]
R.H.S = L.H.S
PROVED!

Answer:
Below
Step-by-step explanation:
● 4 sin(x) cos(x) = sin(4x)/cos(2x)
Let's prove that:
● 4 sin(x) cos(x) cos(2x) = sin(4x)
It's easier to prove it than the first one
■■■■■■■■■■■■■■■■■■■■■■■■■■
● 4 sin(x) cos(x) cos (2x)
● [2 sin(x) cos(x)] 2 cos(2x)
We khow that [2 sin(x) cos(x)]= sin(2x)
So:
● sin(2x) 2 cos(2x)
Based on the same relation
● sin(4x)
It's proved