The temperature at the point (x, y, z) in a substance with conductivity K = 4.5 is u(x, y, z) = 5y2 + 5z2. Find the rate of heat flow inward across the cylindrical surface y2 + z2 = 7, 0 ≤ x ≤ 2.

Respuesta :

Answer:

The rate of the heat flow = 1260 π

Step-by-step explanation:

From the information given :

k = 4.5

u(x,y,z) = 5y² + 5z²

Surface cylinder:

y² +z² = 5,     0 ≤ x ≤ 2

[tex]\mathtt{\overline F = \bigtriangledown u = -k(0,10y, 10z )}[/tex]

[tex]\mathtt{\overline F = -4.5(0,10y, 10z )}[/tex]

[tex]\mathtt{\overline F = (0,-45y, -45z ) \ --- (1)}[/tex]

Now parameterizing the surface by :

x = u  , y = [tex]\mathtt{\sqrt{7} \ cos \ t}[/tex]  , z = [tex]\mathtt{\sqrt{7} \ sin \ t}[/tex]

0 ≤ x ≤ 2        ,        0 ≤ t ≤ 2π

[tex]\mathtt{{ \left. \begin{array}{1} \overline{r_y} = (1,0,0) } \\ \\ \overline{r_t} = (0, \ - \sqrt{7}\ sin \ t, \sqrt{7} \ cos \ t) \end{array} \right\} = r_u \times r_t}[/tex]

[tex]\mathtt{\overline r_u \times \overline r_t = ( -0, - \sqrt{7} \ cos \ t , - \sqrt{7} \ sin \ t) --- (2)}[/tex]

Taking integral of both equations; we have:

[tex]\mathtt{= \int ^{2}_0 \int ^{2 \pi}_{0} (0, -45y, -45 z) (0, - \sqrt{7} \ cos \ t, - \sqrt{7} \ sin \ t) \ dtdu}[/tex]

[tex]\mathtt{= \int ^{2}_0 \int ^{2 \pi}_{0} ( 45\sqrt{7} \ y\ cos \ t+ 45 \sqrt{7} \ z \ sin \ t) \ dtdu}[/tex]

[tex]\mathtt{= 45\sqrt{7}\ \int ^{2}_0 \int ^{2 \pi}_{0} (( \sqrt{7} \ cos \ t)cos \ t + (\sqrt{7} \ \ sin \ t) sin \ t) \ dtdu}[/tex]

[tex]\mathtt{= 45\times {7}\ \int ^{2}_0 \int ^{2 \pi}_{0} (1) \ dtdu}[/tex]

= 315 × (2) × (2π)

= 1260 π