Algebraically determine each of the following for the function y=16 - 4x(squared). A) the x and y intercepts if any. B) the symmetry type (x axis, y axis, origin, or neither.)

Respuesta :

Answer:

A) x intercept: (2, 0) , (-2, 0)

y intercept: (0, 16)

B) symmetric about y axis

Step-by-step explanation:

Given the function:

[tex]y=16-4x^{2}[/tex]

To find:

Algebraically, A) find the x and y intercepts and B) the symmetry type.

Solution:

A) x intercept, let us put y = 0

[tex]y=16-4x^{2}[/tex]

[tex]0=16-4x^{2}\\\Rightarrow 4x^2=16\\\Rightarrow x^2=4\\\Rightarrow x =+2, -2[/tex]

x intercept:  (2, 0) , (-2, 0)

For y intercept, put x = 0

[tex]y=16-4x^{2}[/tex]

y = 16 - 0 =16

y intercept: (0, 16)

B) If the quadratic equation is given as: [tex]y=ax^2+bx+c[/tex],

the axis of symmetry is a vertical line [tex]x=-\frac{b}{2a }[/tex]

Here, c = 16

b = 0 and

a = -4

So, Axis of symmetry is:

[tex]x=-\dfrac{0}{2\times (-4)} = 0[/tex]

which is the equation of y axis.

So, given equation is symmetric about y axis.