Light from a 600 nm source goes through two slits 0.080 mm apart. What is the angular separation of the two first order maxima occurring on a screen 2.0 m from the slits

Respuesta :

Answer:

The angular separation is  [tex]k = 0.8594^o[/tex]

Explanation:

From the question we are told that

   The  wavelength of the light is [tex]\lambda = 600 \ nm = 600*10^{-9} \ m[/tex]

   The  distance of separation between the slit is  [tex]d = 0.080 \ mm = 0.080 *10^{-3} \ m[/tex]

    The distance from the screen is

Generally the condition for  constructive interference is mathematically represented as

        [tex]d \ sin(\theta) = n \lambda[/tex]

=>    [tex]\theta = sin ^{-1} [ \frac{n * \lambda }{ d } ][/tex]

    here [tex]\theta[/tex] is the angular separation between the central maxima and one side of the first order maxima

given that we are considering the first order of maxima n =  1  

        =>   [tex]\theta = sin ^{-1} [ \frac{1 * 600*10^{-9} }{ 2.0 } ][/tex]

        =>    [tex]\theta = sin ^{-1} [ 0.0075 ][/tex]

        =>   [tex]\theta = 0.4297^o[/tex]

So the angular separation of the two first order maxima  is  

     [tex]k = 2 * \theta[/tex]

     [tex]k = 2 * 0.4297[/tex]

      [tex]k = 0.8594^o[/tex]