In an examination of purchasing patterns of shoppers, a sample of 36 shoppers revealed that they spent, on average, $50 per hour of shopping. Based on previous years, the population standard deviation is $4.80 per hour of shopping. Assuming that the amount spent per hour of shopping is normally distributed, calculate a 90% confidence interval.

Respuesta :

Answer:

the 90% confidence interval is ( 48.684  , 51.316  )

Step-by-step explanation:

Given that :

the sample size = 36

Sample Mean = 50

standard deviation = 4.80

The objective is to calculate a 90% confidence interval.

At 90% confidence interval ;

the level of significance = 1 - 0.9 = 0.1

The critical value for [tex]z_{\alpha/2} = z_{0.1/2}[/tex]

[tex]= z_{0.05}[/tex] = 1.645

The standard error S.E = [tex]\dfrac{\sigma}{\sqrt{n}}[/tex]

=[tex]\dfrac{4.8}{\sqrt{36}}[/tex]

[tex]=\dfrac{4.8}{6}[/tex]

= 0.8

The Confidence interval level can be computed as:

[tex]\bar x \ \pm z \times \ \dfrac{ \sigma }{\sqrt{n}}[/tex]

For the lower limit :

[tex]\bar x \ - z \times \ \dfrac{ \sigma }{\sqrt{n}}[/tex]

[tex]=50 \ - 1.645 \times \ \dfrac{ 4.8 }{\sqrt{36}}[/tex]

[tex]=50 \ - 1.645 \times \ 0.8 }}[/tex]

=50 - 1.316

= 48.684

For the upper limit :

[tex]\bar x \ - z \times \ \dfrac{ \sigma }{\sqrt{n}}[/tex]

[tex]=50 \ + 1.645 \times \ \dfrac{ 4.8 }{\sqrt{36}}[/tex]

[tex]=50 \ + 1.645 \times \ 0.8 }}[/tex]

=50 + 1.316

= 51.316

Thus, the 90% confidence interval is ( 48.684  , 51.316  )