contestada

The midpoint of JK is M(8,9). One endpoint is J(10, 10). Find the coordinates of the other
endpoint K.
Write the coordinates as decimals or integers.
K= (1,7)

Respuesta :

Answer:

[tex]K(6,8)[/tex]

Step-by-step explanation:

Given

Midpoint, M = (8,9)

J = (10,10)

Required

Find K

The midpoint of segments is calculated using;

[tex]M(x,y) = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})[/tex]

Where [tex]x = 8[/tex] and  [tex]y = 9[/tex]

Take J as J(x1,y1);

So:

[tex]x_1 = 10[/tex]     [tex]y_1 = 10[/tex]

Substitute values for x and y in the given formula

[tex](8,9) = (\frac{10 + x_2}{2}, \frac{10 + y_2}{2})[/tex]

Solving for x2, we have

[tex]8 = \frac{10 + x_2}{2}[/tex]

Multiply both sides by 2

[tex]2 * 8 = \frac{10 + x_2}{2} * 2[/tex]

[tex]2 * 8 = 10 + x_2[/tex]

[tex]16 = 10 + x_2[/tex]

Make x2 the subject of formula

[tex]x_2 = 16 - 10[/tex]

[tex]x_2 = 6[/tex]

Solving for y2

[tex]9 = \frac{10 + y_2}{2}[/tex]

Multiply both sides by 2

[tex]2 * 9 = \frac{10 + y_2}{2} * 2[/tex]

[tex]2 * 9 = 10 + y_2[/tex]

[tex]18 = 10 + y_2[/tex]

Make y2 the subject of formula

[tex]y_2 = 18 - 10[/tex]

[tex]y_2 = 8[/tex]

So,

[tex](x_2,y_2) = (6,8)[/tex]

So, the coordinates of K is

[tex]K(6,8)[/tex]