Answer:
[tex]K(6,8)[/tex]
Step-by-step explanation:
Given
Midpoint, M = (8,9)
J = (10,10)
Required
Find K
The midpoint of segments is calculated using;
[tex]M(x,y) = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})[/tex]
Where [tex]x = 8[/tex] and [tex]y = 9[/tex]
Take J as J(x1,y1);
So:
[tex]x_1 = 10[/tex] [tex]y_1 = 10[/tex]
Substitute values for x and y in the given formula
[tex](8,9) = (\frac{10 + x_2}{2}, \frac{10 + y_2}{2})[/tex]
Solving for x2, we have
[tex]8 = \frac{10 + x_2}{2}[/tex]
Multiply both sides by 2
[tex]2 * 8 = \frac{10 + x_2}{2} * 2[/tex]
[tex]2 * 8 = 10 + x_2[/tex]
[tex]16 = 10 + x_2[/tex]
Make x2 the subject of formula
[tex]x_2 = 16 - 10[/tex]
[tex]x_2 = 6[/tex]
Solving for y2
[tex]9 = \frac{10 + y_2}{2}[/tex]
Multiply both sides by 2
[tex]2 * 9 = \frac{10 + y_2}{2} * 2[/tex]
[tex]2 * 9 = 10 + y_2[/tex]
[tex]18 = 10 + y_2[/tex]
Make y2 the subject of formula
[tex]y_2 = 18 - 10[/tex]
[tex]y_2 = 8[/tex]
So,
[tex](x_2,y_2) = (6,8)[/tex]
So, the coordinates of K is
[tex]K(6,8)[/tex]