Respuesta :

Answer:

See below.

Step-by-step explanation:

I'm going to use what I assume is the correct question.

[tex] \dfrac{1 - \sin x}{\cos x} = \dfrac{\cos x}{1 + \sin x} [/tex]

[tex] \dfrac{\cos x}{\cos x} \times \dfrac{1 - \sin x}{\cos x} = \dfrac{\cos x}{1 + \sin x} [/tex]

[tex] \dfrac{\cos x(1 - \sin x)}{\cos^2 x} = \dfrac{\cos x}{1 + \sin x} [/tex]

Now use the identity

[tex] sin^2 x + cos^2 x = 1 [/tex]

[tex] cos^2 x = 1 - sin^2 x [/tex]

We replace [tex] \cos^2 x [/tex] in the left denominator.

[tex] \dfrac{\cos x(1 - \sin x)}{1 - \sin^2 x} = \dfrac{\cos x}{1 + \sin x} [/tex]

Factor the difference of squares in the left side denominator.

[tex] \dfrac{\cos x(1 - \sin x)}{(1 + \sin x)(1 - \sin x)} = \dfrac{\cos x}{1 + \sin x} [/tex]

[tex] \dfrac{\cos x}{1 + \sin x} = \dfrac{\cos x}{1 + \sin x} [/tex]