Respuesta :

Answer:

[tex]n^2 + \frac{5}{2}n + \frac{25}{16}[/tex]

[tex](n + \frac{5}{4})^2[/tex]

Step-by-step explanation:

Given

[tex]n^2 + \frac{5}{2}n[/tex]

Required

(a) Make a perfect square trinomial

(b) Write as binomial square

Solving (a)

Let the missing part of the expression be k;

This gives

[tex]n^2 + \frac{5}{2}n + k[/tex]

To solve for k, we need to square half the coefficient of n;

i.e. Since the coefficient of n is [tex]\frac{5}{2}[/tex], then

[tex]k = (\frac{1}{2} * \frac{5}{2})^2[/tex]

[tex]k = (\frac{5}{4})^2[/tex]

[tex]k = \frac{25}{16}[/tex]

Hence;

[tex]n^2 + \frac{5}{2}n + k[/tex] = [tex]n^2 + \frac{5}{2}n + \frac{25}{16}[/tex]

Solving (b)

[tex]n^2 + \frac{5}{2}n + \frac{25}{16}[/tex]

Expand [tex]\frac{5}{2}n[/tex]

[tex]n^2 + \frac{5}{4}n+ \frac{5}{4}n + \frac{25}{16}[/tex]

Factorize

[tex]n(n + \frac{5}{4})+ \frac{5}{4}(n + \frac{5}{4})[/tex]

[tex](n + \frac{5}{4})(n + \frac{5}{4})[/tex]

[tex](n + \frac{5}{4})^2[/tex]

Hence:

[tex]n^2 + \frac{5}{2}n + \frac{25}{16}[/tex] = [tex](n + \frac{5}{4})^2[/tex]