Answer:
[tex] x = 10 [/tex]
m<CQF = 32°
m<AQE = 32°
Step-by-step explanation:
m<CQB = m<CQA = 90° (right angle)
m<CQB = m<CQF + m<FQB
m<CQF = 3x + 2
m<FQB = 58°
Therefore,
[tex] 90 = 3x + 2 + 58 [/tex]
Solve for x:
[tex] 90 = 3x + 60 [/tex]
[tex] 90 - 60 = 3x + 60 - 60 [/tex]
[tex] 30 = 3x [/tex]
[tex] \frac{30}{3} = \frac{3x}{3} [/tex]
[tex] 10 = x [/tex]
[tex] x = 10 [/tex]
m<CQF = 3x + 2
Plug in the value of x to find m<CQF
m<CQF = 3(10) + 2 = 30 + 2
m<CQF = 32°
m<CQF and m<AQE are vertical opposite angles, therefore, they are congruent.
Thus,
m<AQE = 32°