Respuesta :

Answer:

[tex]\huge \boxed{2\sqrt{5} +\sqrt{35}}[/tex]

Step-by-step explanation:

[tex]\sqrt{5} (2+\sqrt{7} )[/tex]

Expand brackets.

[tex]\sqrt{5} (2)+\sqrt{5}(\sqrt{7} )[/tex]

[tex]2\sqrt{5} +\sqrt{5} \sqrt{7}[/tex]

Apply radical rule : [tex]\sqrt{a} \sqrt{b} =\sqrt{ab}[/tex]

[tex]2\sqrt{5} +\sqrt{5 \times 7}[/tex]

[tex]2\sqrt{5} +\sqrt{35}[/tex]

Answer:

[tex] \boxed{ \boxed{ \bold{ \blue{2 \sqrt{5} + \sqrt{35} }}}}[/tex]

Option A is the correct option.

Step-by-step explanation:

[tex] \sf{ \sqrt{5} \: (2 + \sqrt{7} )}[/tex]

Distribute √5 through the parentheses

⇒[tex] \sf{ \sqrt{5} \times 2 + \sqrt{5} \times \sqrt{7} }[/tex]

Calculate the product

⇒[tex] \sf{2 \sqrt{5} + \sqrt{5 \times 7} }[/tex]

⇒[tex] \sf{2 \sqrt{5} + \sqrt{35} }[/tex]

Hope I helped!

Best regards!