Respuesta :
Answer:
[tex]\huge \boxed{2\sqrt{5} +\sqrt{35}}[/tex]
Step-by-step explanation:
[tex]\sqrt{5} (2+\sqrt{7} )[/tex]
Expand brackets.
[tex]\sqrt{5} (2)+\sqrt{5}(\sqrt{7} )[/tex]
[tex]2\sqrt{5} +\sqrt{5} \sqrt{7}[/tex]
Apply radical rule : [tex]\sqrt{a} \sqrt{b} =\sqrt{ab}[/tex]
[tex]2\sqrt{5} +\sqrt{5 \times 7}[/tex]
[tex]2\sqrt{5} +\sqrt{35}[/tex]
Answer:
[tex] \boxed{ \boxed{ \bold{ \blue{2 \sqrt{5} + \sqrt{35} }}}}[/tex]
Option A is the correct option.
Step-by-step explanation:
[tex] \sf{ \sqrt{5} \: (2 + \sqrt{7} )}[/tex]
Distribute √5 through the parentheses
⇒[tex] \sf{ \sqrt{5} \times 2 + \sqrt{5} \times \sqrt{7} }[/tex]
Calculate the product
⇒[tex] \sf{2 \sqrt{5} + \sqrt{5 \times 7} }[/tex]
⇒[tex] \sf{2 \sqrt{5} + \sqrt{35} }[/tex]
Hope I helped!
Best regards!