Respuesta :

Answer:

[tex] \boxed{ \bold{24}}[/tex]

Step-by-step explanation:

[tex] \mathsf{given}[/tex]

[tex] \mathsf{hypotenuse(h) = 25}[/tex]

[tex] \sf{perpendicular (p) = 7}[/tex]

[tex] \sf{base(b) = }[/tex]?

Now, Using Pythagoras theorem

[tex] \sf{{h}^{2} = {p}^{2} + {b}^{2} }[/tex]

plug the values

⇒[tex] \sf{ {25}^{2} = {7}^{2} + {b}^{2} }[/tex]

Evaluate the power

⇒[tex] \sf{625 = 49 + {b}^{2} }[/tex]

Swap the sides of the equation

⇒[tex] \sf{49 + {b}^{2} = 625}[/tex]

Move constant to right hand side and change it's sign

⇒[tex] \sf{ {b}^{2} = 625 - 49}[/tex]

Calculate the difference

⇒[tex] \sf{ {b}^{2} = 576}[/tex]

Squaring on both sides

⇒[tex] \sf{b = 24}[/tex]

Hope I helped!

Best regards!