Respuesta :

Answer:  The answer is:  " x = 2.833333333333...." .

___________________________

             or:  write as:  " 2 [tex]\frac{5}{6}[/tex] " .  

___________________________

Step-by-step explanation:

___________________________

Set up a ratio:

Note:  Segment FH =  (x + 35)

         Segment JL = 20 ;

         Segment FH ~ Segment JL ;

___________________________

Note:  Segment GH = (x - 4) ;

         Segment  KL  =  5 ;

         Segment GH ~ Segment KL .

___________________________

So, ( x + 3.5) : 20 :: (x-4) : 5 ;

Write this ratio in fraction format:

___________________________

→  [tex]\frac{(x+3.5) }{20 } = \frac{(x-4) }{5}[/tex]  ;

Now; "cross-factor multiply" :

→  [tex]\frac{a}{b} = \frac{c}{d }[/tex]  ;  → [tex]ad = bc[/tex] ; { [tex]{ a\neq0 ; b\neq0 ; c\neq0 ; d\neq0[/tex] .}.

___________________________

So:

  5(x + 3.5)  =  20(x - 4) ;  

___________________________

→ To simplify, start by divide each side of the equation by "5" ;

___________________________

  →   {5(x + 3.5) } / 5  =  { 20(x - 4)  } / 5 ;

to get:

      →  (x + 3.5)  =  4(x - 4) ;

___________________________

Now, on the right-hand side of the equation;

  let us expand the expression;

___________________________

We have the expression:  " 4(x - 4) " ;

 To expand:

Note the "distributive property of multiplication:

     →   a(b + c)  = ab + ac ;

Likewise:

     →   4(x - 4)  = 4x  - 16 ;

___________________________

Now, we can rewrite our equation:

___________________________

     →   " x + 3.5  =  4x - 15 "  ;

Now, we can subtract "x" from each side of the question;

     & add "15" to each side of the equation; as folllows:

___________________________

     →     x + 3.5  =  4x - 15 ;

          - x + 15   =  - x  +15

___________________________

to get:        8.5  =  3x ;  

                   ↔  3x  = 8.5 ;

Now, divide each side of the equation by "3" ;

       to isolate "x" on one side of the equation;

       & to solve for "x" ;  as follows:

                     →  3x / 3 = 8.5 / 3 ;

             to get:   x  = 8.5 /3  

                              = 2.83333333333 ;  

                         or; write as:  " 2 [tex]\frac{5}{6}[/tex] ."

___________________________

Hope this is helpful to you!  Best wishes!

___________________________