Match the property name with the appropriate equation. Use each once.
19. Opposite of a Difference
A. -[(-r) + 2p] =-(-r) - 2p
20. Opposite of a Sum
B. 160 - (3d + 2)(0) = 160 - 0
21. Opposite of an Opposite
C. 5(2 - x) = 10 - 5x
22. Multiplication by 0
D. -(4r + 3s) + t = (-1)(4r + 3s) + t
23. Multiplication by -1
E. -(8 - 3m) = 3m - 8
24. Distributive Property
F. [-19 - 2w)] = 9 - 2w

Respuesta :

Answer:

19. Opposite of a Difference     ↔    E. -(8 - 3·m) = 3·m - 8

20. Opposite of a sum               ↔    A.  -[(-r) + 2p] = -(-r) - 2p

21. Opposite of an Opposite     ↔   F. -1[ -1(9 - 2w)] =  9 - 2w

22. Multiplication by 0               ↔   B.  160 - (3d + 2)(0) = 160 - 0

23. Multiplication by                   ↔   D. -1 -(4r + 3s) + t = (-1)(4r + 3s) + t

21. Distributive property             ↔   C.  5(2 - x) = 10 - 5x

Step-by-step explanation:

19. Opposite of a difference is the difference of the opposites

20. Opposite of a sum is the sum if the opposites

21. Opposite of an opposite is the original number

22. Multiplication by 0- The result of multiplication by 0 is 0

23. Multiplication by -1 results in the change in sign of a number

24. Distributive property - Multiplying the sum or difference of two numbers  by a number, will have the same result as multiplying each each of the addends by the number individually and adding the product together.