A steel wire of length 31.0 m and a copper wire of length 17.0 m, both with 1.00-mm diameters, are connected end to end and stretched to a tension of 122 N. During what time interval will a transverse wave travel the entire length of the two wires

Respuesta :

Answer:

The time taken is  [tex]t = 0.356 \ s[/tex]

Explanation:

From the question we are told that

  The length of steel the wire is  [tex]l_1 = 31.0 \ m[/tex]

   The  length of the  copper wire is  [tex]l_2 = 17.0 \ m[/tex]

    The  diameter of the wire is  [tex]d = 1.00 \ m = 1.0 *10^{-3} \ m[/tex]

     The  tension is  [tex]T = 122 \ N[/tex]

     

The time taken by the transverse wave to travel the length of the two wire is mathematically represented as

              [tex]t = t_s + t_c[/tex]

Where  [tex]t_s[/tex] is the time taken to transverse the steel wire which is mathematically represented as

         [tex]t_s = l_1 * [ \sqrt{ \frac{\rho * \pi * d^2 }{ 4 * T} } ][/tex]

here  [tex]\rho_s[/tex] is the density of steel with a value  [tex]\rho_s = 8920 \ kg/m^3[/tex]

   So

      [tex]t_s = 31 * [ \sqrt{ \frac{8920 * 3.142* (1*10^{-3})^2 }{ 4 * 122} } ][/tex]

      [tex]t_s = 0.235 \ s[/tex]

 And

        [tex]t_c[/tex] is the time taken to transverse the copper wire which is mathematically represented as

      [tex]t_c = l_2 * [ \sqrt{ \frac{\rho_c * \pi * d^2 }{ 4 * T} } ][/tex]

here  [tex]\rho_c[/tex] is the density of steel with a value  [tex]\rho_s = 7860 \ kg/m^3[/tex]

 So

      [tex]t_c = 17 * [ \sqrt{ \frac{7860 * 3.142* (1*10^{-3})^2 }{ 4 * 122} } ][/tex]

      [tex]t_c =0.121[/tex]

So  

   [tex]t = t_c + t_s[/tex]

    [tex]t = 0.121 + 0.235[/tex]

    [tex]t = 0.356 \ s[/tex]