Respuesta :

Answer: [tex]f(x)=-x[/tex]

Step-by-step explanation:

When f(-x)= -f(x), then it is known as an odd function.

i) [tex]f(x) = x^3 + 5x^2 + x[/tex]

Then, [tex]f(-x)=(-x)^3+5(-x)^2+(-x)=-x^3+5x^2-x\neq -x^3-5x^2-x[/tex]

i.e. [tex]f(-x)\neq-f(x)[/tex]

ii) [tex]f(x)=\sqrt{x}[/tex]

[tex]f(-x)=\sqrt{-x}\neq-\sqrt{x}[/tex]

i.e. [tex]f(-x)\neq-f(x)[/tex]

iii) [tex]f(x)=x^2+x[/tex]

[tex]f(-x)=(-x)^2+(-x)=x^2-x\neq-x^2-x[/tex]

i.e. [tex]f(-x)\neq-f(x)[/tex]

iv) [tex]f(x)=-x[/tex]

[tex]f(-x)=-(-x)=x[/tex]

[tex]-f(x)=-(-x)=x[/tex]

i.e. [tex]f(-x)=-f(x)[/tex]

Hence, f(x) is an odd function.

Answer:

D

Step-by-step explanation:

if you don't want to read