Respuesta :
Answer:
[tex]20\; \rm m \cdot s^{-1}[/tex].
Explanation:
Because the track is level and frictionless, the net force on this car-load system will be zero in the horizontal direction. As a result, (by Newton's Second Law of mechanics,) the total momentum of this system in the horizontal direction will stay the same.
Momentum of the car-load system in the horizontal direction, before contact:
- Car: [tex]m(\text{car}) \cdot v(\text{car, before}) = 1.2 \times 10^{4}\; \rm kg \times 25\; m \cdot s^{-1} = 3.0 \times 10^{6}\; \rm kg \cdot m \cdot s^{-1}[/tex].
- Load: zero (for it is dropped "vertically.")
Combine the two parts to obtain: [tex]p(\text{system, before}) = 3.0 \times 10^{6}\; \rm kg \cdot m \cdot s^{-1}[/tex].
Because the load stays on the car, the car and the load should have the same horizontal velocity after contact. Let [tex]v(\text{system})[/tex] denote that velocity. Momentum of the system after contact:
- Car: [tex]m(\text{car}) \cdot v(\text{car, after}) = 1.2 \times 10^{4}\; \rm kg \times (\mathnormal{v}(\text{system}))[/tex].
- Load: [tex]m(\text{load}) \cdot v(\text{load, after}) = 3000\; \rm kg \times (\mathnormal{v}(\text{system}))[/tex].
Combine to obtain:
[tex]p(\text{system, after}) =1.5\times 10^{4}\; \rm kg \times (\mathnormal{v}(\text{system}))[/tex].
Because the total momentum of the system will stay the same:
[tex]\begin{aligned}&1.5\times 10^{4}\; \rm kg \times (\mathnormal{v}(\text{system}))\\ &= p(\text{system, after}) \\&= p(\text{system, before}) \\ &= 3.0\times 10^{6}\; \rm kg \cdot m \cdot s^{-1}\end{aligned}[/tex].
Solve for [tex]v(\text{system})[/tex] to obtain:
[tex]v(\text{system}) = 20\; \rm m\cdot s^{-1}[/tex].
In other words, the new velocity of the system would be [tex]20\; \rm m \cdot s^{-1}[/tex].