Respuesta :

Answer:

[tex]\huge\boxed{\frac{x^{15}y^{25}}{z^{21}} }[/tex]

Step-by-step explanation:

[tex](x^2y^3z^{-3})^7(xy^4)\\[/tex]

Expanding Parenthesis

[tex](x^{2*7 } y^{3*7}z^{-3*7})(xy^4)\\x^{14}y^{21}z^{-21} * xy^4[/tex]

Combining like terms

[tex]x^{14} * x * y^{21} * y^4 * z^{-21}[/tex]

When bases are same , powers are to be added

[tex]x^{14+1} y^{21+4} x^{-21}[/tex]

[tex]x^{15} y^{25} z^{-21}[/tex]

Neutralizing the negative sign by shifting z to the denominator

[tex]\frac{x^{15}y^{25}}{z^{21}}[/tex]

Answer:

[tex]\huge \boxed{ \frac{x^{15} y^{25}}{z^{21} } }[/tex]

Step-by-step explanation:

[tex](x^2 y^3 z^{-3})^7 (xy^4)[/tex]

[tex]\sf Apply \ exponent \ rule : (a^b)^c=a^{bc}[/tex]

[tex](x^{2 \times 7} y^{3 \times 7} z^{-3 \times 7})(xy^4)[/tex]

[tex](x^{14} y^{21} z^{-21})(xy^4)[/tex]

[tex]x^{14} \times y^{21} \times z^{-21} \times x \times y^4[/tex]

[tex]\sf Apply \ exponent \ rule : a^b \times a^c=a^{b+c}[/tex]

[tex]x^{14} \times x^1 \times y^{21} \times y^4 \times z^{-21}[/tex]

[tex]x^{14+1} \times y^{21+4} \times z^{-21}[/tex]

[tex]x^{15} \times y^{25} \times z^{-21}[/tex]

[tex]\displaystyle \sf Apply \ exponent \ rule : a^{-b} =\frac{1}{a^b}[/tex]

[tex]\displaystyle x^{15} \times y^{25} \times \frac{1}{z^{21} }[/tex]

[tex]\displaystyle \frac{x^{15} y^{25}}{z^{21} }[/tex]