Answer:
8.25
Step-by-step explanation:
[tex]\frac{8r^2 - 14 r + 3}{r+5} = 4r -1[/tex]
[tex]8r^2 - 14r + 3= (4r -1)(r + 5)[/tex]
[tex]8r^2 - 14r + 3= 4 {r}^{2} + 19r - 5[/tex]
[tex]4 {r}^{2} - 33r + 8=0[/tex]
[tex]4 {r}^{2} - 32r - r + 8 = 0[/tex]
[tex]4r(r - 8) - 1(r - 8) = 0[/tex]
[tex](4r - 1)(r - 8)[/tex]
[tex]r = 8 \: or \: \frac{1}{4} [/tex]
Therefore the sum of all values of r
[tex]8 + \frac{1}{4} = 8 \frac{1}{4} [/tex]