If a diode at 300°K with a constant bias current of 100μA has a forward voltage of 700mV across it, what will the voltage drop across this same diode be if the bias current is increased to 1mA? g

Respuesta :

Answer:

the voltage drop across this same diode will be 760 mV

Explanation:

Given that:

Temperature T = 300°K

current [tex]I_1[/tex] = 100 μA

current [tex]I_2[/tex] = 1 mA

forward voltage [tex]V_r[/tex] = 700 mV = 0.7 V

To objective is to find the voltage drop across this same diode  if the bias current is increased to 1mA.

Using the formula:

[tex]I = I_o \begin {pmatrix} e^{\dfrac{V_r}{nv_T}-1} \end {pmatrix}[/tex]

[tex]I_1 = I_o \begin {pmatrix} e^{\dfrac{V_r}{nv_T}-1} \end {pmatrix}[/tex]

where;

[tex]V_r[/tex] = 0.7

[tex]I_1 = I_o \begin {pmatrix} e^{\dfrac{0.7}{nv_T}-1} \end {pmatrix}[/tex]

[tex]I_2 = I_o \begin {pmatrix} e^{\dfrac{V_r'}{nv_T}-1} \end {pmatrix}[/tex]

[tex]\dfrac{I_1}{I_2} = \dfrac{ I_o \begin {pmatrix} e^{\dfrac{0.7}{nv_T}-1} \end {pmatrix} }{ I_o \begin {pmatrix} e^{\dfrac{V_r'}{nv_T}-1} \end {pmatrix} }[/tex]

[tex]\dfrac{100 \ \mu A}{1 \ mA} = \dfrac{ \begin {pmatrix} e^{\dfrac{0.7}{nv_T}-1} \end {pmatrix} }{ \begin {pmatrix} e^{\dfrac{V_r'}{nv_T}-1} \end {pmatrix} }[/tex]

Suppose n = 1

[tex]V_T = \dfrac{T}{11600} \\ \\ V_T = \dfrac{300}{11600} \\ \\ V_T = 25. 86 \ mV[/tex]

Then;

[tex]e^{\dfrac{V_r'}{nv_T}-1} = 10 \begin {pmatrix} e ^{\dfrac{ 0.7} { nV_T} -1} \end {pmatrix}[/tex]

[tex]e^{\dfrac{V_r'}{nv_T}-1} = 10 \begin {pmatrix} e ^{\dfrac{ 0.7} { 25.86} -1} \end {pmatrix}[/tex]

[tex]e^{\dfrac{V_r'}{nv_T}-1} = 5.699 \times 10^{12}[/tex]

[tex]{e^\dfrac{V_r'}{nv_T}} = 5.7 \times 10^{12}[/tex]

[tex]{\dfrac{V_r'}{nv_T}} =log_{e ^{5.7 \times 10^{12}}}[/tex]

[tex]{\dfrac{V_r'}{nv_T}} =29.37[/tex]

[tex]V_r'=29.37 \times nV_T[/tex]

[tex]V_r'=29.37 \times 25.86[/tex]

[tex]V_r'=759.5 \ mV[/tex]

[tex]Vr' \simeq[/tex] 760 mV

Thus, the voltage drop across this same diode will be 760 mV