Answer:
Full question is:
Find equations of the tangent plane and the normal line to the given surface at the specified point. x + y + z = 7[tex]e^{xyz}[/tex] at a specified point (0, 0, 7)
Step-by-step explanation:
If we have a level surface, then it will give us
f(x,y,z) = x+y+z = 7[tex]e^{xyz}[/tex]. where f is the function of the x, y, and z coordinates.
Now let us calculate the ∇ gradient of f at point (0,0,7):
∇[tex]f|_{(0,0,7)}[/tex] = (fx,fy,fz) = (1−7yz[tex]e^{xyz}[/tex],1−7xz[tex]e^{xyz}[/tex],1−7xy[tex]e^{xyz}[/tex])[tex]|_{(0,0,7)}[/tex]
= (1, 1, 1)
We get the equation for the tangent plane A:
A: 1(x−0) + 1(y−0) + 1(z−7)=0
This can also be written as:
x+y+z = 7 ------------------------------------------------------------------(a)
The equation for the normal line B gives us :
L: (x,y,z) = (0,0,7) + t(1, 1, 1), t ∈ R --------------------------------(b)