Answer:
[tex]y = 8x -67[/tex]
Step-by-step explanation:
Given
(9,5) and (8,-3)
Required
Determine the line equation
First, we need to determine the slope of the line: using
[tex]m = \frac{y_1 - y_2}{x_1 - x_2}[/tex]
Where
[tex](x_1,y_1) = (9,5)[/tex]
[tex](x_2,y_2) = (8,-3)[/tex]
So;
[tex]m = \frac{y_1 - y_2}{x_1 - x_2}[/tex] becomes
[tex]m = \frac{5 - (-3)}{9 - 8}[/tex]
[tex]m = \frac{5 +3}{9 - 8}[/tex]
[tex]m = \frac{8}{1}[/tex]
[tex]m = 8[/tex]
The line equation using point slope form is calculated as thus:
[tex](y- y_1) = m(x - x_1)[/tex]
Using [tex](x_1,y_1) = (9,5)[/tex] and [tex]m = 8[/tex], we have
[tex]y - 5 = 8(x - 9)[/tex]
Open the bracket
[tex]y - 5 = 8x - 72[/tex]
Make y the subject of formula
[tex]y = 8x - 72 + 5[/tex]
[tex]y = 8x -67[/tex]