The market inverse demand curve is P = 90 – Q, where Q is the total market output consisting of Firm 1's output, q1, and Firm 2's output, q2. Both firms have a constant marginal cost of $10. If Firm 1 selects its output level first, how much output does each firm produce?

Respuesta :

Answer:

Firm 1 produces 40 and Firm 2 produce 20

Explanation:

Given that:

The market inverse demand curve is P = 90 – Q

Total TC = 10q + 10

and θ = q₁ + q₂

Both firms have a constant marginal cost

Then :

TC₁ = 10q₁ + 10

TC₂ = 10q₂ + 10

If Firm 1 selects its output level first, then it acts as a leader and firm 2 acts as a follower.

So, let have :

Ф₂  = pq₂  - TC₂

Ф₂  =  (90 - θ)q₂ - 10q₂ - 10

Ф₂  = 90q₂ - (q₁ + q₂)q₂  - 10q₂ - 10

Ф₂  =  80q₂  - q₁q₂ - q₂² - 10

[tex]\dfrac{d \phi_2}{dq_2} = 80 - q_1 - 2q_2[/tex]

80 - q₁ - 2q₂ = 0

80 - q₁ = 2q₂

2q₂= 80 - q₁

[tex]q_2 = \dfrac{80 - q_1}{2}[/tex]

[tex]q_2 = 40 - \dfrac{ q_1}{2}[/tex]

Ф₁ = pq₁- TC₁

Ф₁ = ( 90 - θ )q₁ - 10q₁ - 10

Ф₁  = 90q₁ - (q₁ + q₂)q₁  - 10q₁ - 10

Ф₁  = 80q₁ - q₁² - q₁q₂ - 10

Replace the value of q₂ in the above equation ,

[tex]\phi _1 = 80q_1 - q_1^2 - q_1 (40 - \dfrac{q_1}{2}) - 10[/tex]

[tex]\phi _1 = 80q_1 - q_1^2 - 40q_1 - \dfrac{q_1^2}{2} - 10[/tex]

[tex]\phi _1 = 40q_1 - \dfrac{q_1^2}{2} - 10[/tex]

[tex]\dfrac{ d \phi_1}{ d q_1} = 40 - \dfrac{2q}{2} - 0[/tex]

[tex]\dfrac{ d \phi_1}{ d q_1} = 40 - q_1[/tex]

40 - q₁= 0

q₁ = 40

Recall that

[tex]q_2 = 40 - \dfrac{ q_1}{2}[/tex]

[tex]q_2 = 40 - \dfrac{ 40}{2}[/tex]

[tex]q_2 = \dfrac{ 80-40}{2}[/tex]

[tex]q_2 = \dfrac{ 40}{2}[/tex]

q₂ = 20

Firm 1 produces 40 and Firm 2 produce 20