Respuesta :

Answer:

 circumference of the satellite orbit  = 4.13 × 10⁷ m

Explanation:

Given that:

the time period T = 88.5 min = 88.5 × 60  = 5310 sec

The mass of the earth [tex]M_e[/tex] = 5.98 × 10²⁴ kg

if  the radius of orbit is r,

Then,

[tex]\dfrac{V^2}{r} = \dfrac{GM_e}{r^2}[/tex]

[tex]{V^2} = \dfrac{GM_e r}{r^2}[/tex]

[tex]{V^2} = \dfrac{GM_e }{r}[/tex]

[tex]{V} =\sqrt{ \dfrac{GM_e }{r}}[/tex]

Similarly :

[tex]T = \sqrt{\dfrac{ 2 \pi r} {V} }[/tex]

where; [tex]{V} =\sqrt{ \dfrac{GM_e }{r}}[/tex]

Then:

[tex]T = {\dfrac{ 2 \pi r^{3/2}} {\sqrt{ {GM_e }} }[/tex]

[tex]5310= {\dfrac{ 2 \pi r^{3/2}} {\sqrt{ {6.674\times 10^{-11} \times 5.98 \times 10^{24} }} }[/tex]

[tex]5310= {\dfrac{ 2 \pi r^{3/2}} {\sqrt{ 3.991052 \times 10^{14} }}[/tex]

[tex]5310= {\dfrac{ 2 \pi r^{3/2}} {19977617.48}[/tex]

[tex]5310 \times 19977617.48= 2 \pi r^{3/2}}[/tex]

[tex]1.06081149 \times 10^{11}= 2 \pi r^{3/2}}[/tex]

[tex]\dfrac{1.06081149 \times 10^{11}}{2 \pi}= r^{3/2}}[/tex]

[tex]r^{3/2}} = \dfrac{1.06081149 \times 10^{11}}{2 \pi}[/tex]

[tex]r^{3/2}} = 1.68833392 \times 10^{10}[/tex]

[tex]r= (1.68833392 \times 10^{10})^{2/3}}[/tex]

[tex]r= 2565.38^2[/tex]

r = 6579225 m

The  circumference of the satellites  orbit can now be determined by using the formula:

 circumference = 2π r

 circumference = 2π  × 6579225 m

 circumference = 41338489.85 m

 circumference of the satellite orbit  = 4.13 × 10⁷ m