The perimeter of a rectangle is 80 cm. Find the lengths of the sides of the rectangle giving the maximum area.Enter the answers for the lengths of the sides in increasing order.

Respuesta :

Answer:

The lengths of the sides are 20 cm and 20 cm

Step-by-step explanation:

Given

Perimeter, P = 80cm

Represent the length and width with L and W, respectively;

[tex]P= 2*(L + B)[/tex]

Substitute 80 for P

[tex]80 = 2 * (L + B)[/tex]

Divide through by 2

[tex]40 = L + B[/tex]

[tex]L + B = 40[/tex]

Make L the subject of formula

[tex]L = 40 - B[/tex]

Area of a rectangle is calculated as thus;

[tex]Area = L * B[/tex]

Substitute 40 - B for L

[tex]Area = (40 - B) * B[/tex]

Express this as a function

[tex]A(B) = (40 - B)* B[/tex]

[tex](40 - B)* B = A(B)[/tex]

Set A(B) = 0 to determine the roots

Hence;

[tex](40 - B)* B = 0[/tex]

[tex]40 - B = 0[/tex] or [tex]B = 0[/tex]

[tex]40 = B[/tex] or [tex]B = 0[/tex]

[tex]B = 40[/tex] or [tex]B = 0[/tex]

The maximum area of a rectangle occurs at half the sum of the roots;

So;

[tex]B= \frac{B_1 + B_2}{2}[/tex]

[tex]B= \frac{40+0}{2}[/tex]

[tex]B= \frac{40}{2}[/tex]

[tex]B = 20[/tex]

Recall that [tex]L = 40 - B[/tex]

[tex]L = 40 - 20[/tex]

[tex]L = 20[/tex]

Hence the lengths of the sides are 20 cm and 20 cm