Respuesta :

Answer:

Attachment 1 : Option C

Attachment 2 : Option A

Step-by-step explanation:

( 1 ) Expressing the product of z1 and z2 would be as follows,

[tex]14\left[\cos \left(\frac{\pi \:}{5}\right)+i\sin \left(\frac{\pi \:\:}{5}\right)\right]\cdot \:2\sqrt{2}\left[\cos \left(\frac{3\pi \:}{2}\right)+i\sin \left(\frac{3\pi \:\:}{2}\right)\right][/tex]

Now to solve such problems, you will need to know what cos(π / 5) is, sin(π / 5) etc. If you don't know their exact value, I would recommend you use a calculator,

cos(π / 5) = [tex]\frac{\sqrt{5}+1}{4}[/tex],

sin(π / 5) = [tex]\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}[/tex]

cos(3π / 2) = 0,

sin(3π / 2) = - 1

Let's substitute those values in our expression,

[tex]14\left[\frac{\sqrt{5}+1}{4}+i\frac{\sqrt{2}\sqrt{5-\sqrt{5}}}{4}\right]\cdot \:2\sqrt{2}\left[0-i\right][/tex]

And now simplify the expression,

[tex]14\sqrt{5-\sqrt{5}}+i\left(-7\sqrt{10}-7\sqrt{2}\right)[/tex]

The exact value of [tex]14\sqrt{5-\sqrt{5}}[/tex] = [tex]23.27510\dots[/tex] and [tex](-7\sqrt{10}-7\sqrt{2}\right))[/tex] = [tex]-32.03543\dots[/tex] Therefore we have the expression [tex]23.27510 - 32.03543i[/tex], which is close to option c. As you can see they approximated the solution.

( 2 ) Here we will apply the following trivial identities,

cos(π / 3) = [tex]\frac{1}{2}[/tex],

sin(π / 3) = [tex]\frac{\sqrt{3}}{2}[/tex],

cos(- π / 6) = [tex]\frac{\sqrt{3}}{2}[/tex],

sin(- π / 6) = [tex]-\frac{1}{2}[/tex]

Substitute into the following expression, representing the quotient of the given values of z1 and z2,

[tex]15\left[cos\left(\frac{\pi \:}{3}\right)+isin\left(\frac{\pi \:\:}{3}\right)\right] \div \:3\sqrt{2}\left[cos\left(\frac{-\pi \:}{6}\right)+isin\left(\frac{-\pi \:\:}{6}\right)\right][/tex] ⇒

[tex]15\left[\frac{1}{2}+\frac{\sqrt{3}}{2}\right]\div \:3\sqrt{2}\left[\frac{\sqrt{3}}{2}+-\frac{1}{2}\right][/tex]

The simplified expression will be the following,

[tex]i\frac{5\sqrt{2}}{2}[/tex] or in other words [tex]\frac{5\sqrt{2}}{2}i[/tex] or [tex]\frac{5i\sqrt{2}}{2}[/tex]

The solution will be option a, as you can see.