Respuesta :
Answer:
The average density of the rod is 1.605 kg/m.
Explanation:
The average density of the rod is given by:
[tex] \rho = \frac{m}{l} [/tex]
To find the average density we need to integrate the linear density from x₁ = 0 to x₂ = 3, as follows:
[tex] \int_{0}^{3} \frac{8}{3(x + 1)}dx [/tex]
[tex] \rho = \frac{8}{3} \int_{0}^{3} \frac{1}{(x + 1)}dx [/tex] (1)
Using u = x+1 → du = dx → u₁= x₁+1 = 0+1 = 1 and u₂ = x₂+1 = 3+1 = 4
By entering the values above into (1), we have:
[tex] \rho = \frac{8}{3} \int_{0}^{3} \frac{1}{u}du [/tex]
[tex]\rho = \frac{8}{3}*log(u)|_{1}^{4} = \frac{8}{3}[log(4) - log(1)] = 1.605 kg/m[/tex]
Therefore, the average density of the rod is 1.605 kg/m.
I hope it helps you!
The average density of the rod is [tex]1.605 \;\rm kg/m^{3}[/tex].
Given data:
The length of rod is, L = 3 m.
The linear density of rod is, [tex]\rho=\dfrac{8}{x+1} \;\rm kg/m[/tex].
To find the average density we need to integrate the linear density from x₁ = 0 to x₂ = 3, The expression for the average density is given as,
[tex]\rho' = \int\limits^3_0 { \rho} \, dx\\\\\\\rho' = \int\limits^3_0 { \dfrac{m}{L}} \, dx\\\\\\\rho' = \int\limits^3_0 {\dfrac{8}{3(x+1)}} \, dx[/tex]............................................................(1)
Using u = x+1
du = dx
u₁= x₁+1 = 0+1 = 1
and
u₂ = x₂+1 = 3+1 = 4
By entering the values above into (1), we have:
[tex]\rho' =\dfrac{8}{3} \int\limits^3_0 {\dfrac{1}{u}} \, du\\\\\\\rho' =\dfrac{8}{3} \times [log(u)]^{4}_{1}\\\\\\\rho' =\dfrac{8}{3} \times [log(4)-log(1)]\\\\\\\rho' =1.605 \;\rm kg/m^{3}[/tex]
Thus, we can conclude that the average density of the rod is [tex]1.605 \;\rm kg/m^{3}[/tex].
Learn more about the average density here:
https://brainly.com/question/1371999