What is the minimum sample size required to estimate a population mean with 90% confidence when the desired margin of error is 1.25

Respuesta :

Complete Question

What is the minimum sample size required to estimate a population mean with 90% confidence when the desired margin of error is 1.25? The standard deviation in a pre-selected sample is  7.5

Answer:

The minimum sample size is  [tex]n =97[/tex]

Step-by-step explanation:

From the question  we are told that

 The margin of error is  [tex]E = 1.25[/tex]

   The  standard deviation is  [tex]s = 7.5[/tex]

Given that the confidence level is  90% then the level of significance is mathematically represented as

             [tex]\alpha = 100 - 90[/tex]  

             [tex]\alpha =10\%[/tex]  

             [tex]\alpha =0.10[/tex]

Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table  

    The value is  [tex]Z_{\frac{ \alpha }{2} } = 1.645[/tex]

   The  minimum sample size is mathematically evaluated as

         [tex]n = \frac{Z_{\frac{\alpha }{2} * s^2 }}{E^2 }[/tex]

=>        [tex]n = \frac{1.645^2 * 7.5^2 }{1.25^2 }[/tex]

=>        [tex]n =97[/tex]