Given two points M & N on the coordinate plane, find the slope of MN , and state the slope of the line perpendicular to MN . (there's two questions)
1) M(9,6), N(1,4)

2) M(-2,2), N(4,-4)

Respuesta :

Answer:

Problem 1)       [tex] m = \dfrac{1}{4} [/tex]     [tex] slope_{perpendicular} = -4 [/tex]

Problem 2)      [tex] m = \dfrac{1}{3} [/tex]     [tex] slope_{perpendicular} = -3 [/tex]

Step-by-step explanation:

[tex] slope = m = \dfrac{y_2 - y_1}{x_2 - x_1} [/tex]

[tex] slope_{perpendicular} = \dfrac{-1}{m} [/tex]

Problem 1) M(9,6), N(1,4)

[tex] slope = m = \dfrac{6 - 4}{9 - 1} = \dfrac{2}{8} = \dfrac{1}{4} [/tex]

[tex] slope_{perpendicular} = \dfrac{-1}{\frac{1}{4}} = -4 [/tex]

Problem 2) M(-2,2), N(4,-4)

[tex] slope = m = \dfrac{4 - 2}{4 - (-2)} = \dfrac{2}{6} = \dfrac{1}{3} [/tex]

[tex] slope_{perpendicular} = \dfrac{-1}{\frac{1}{3}} = -3 [/tex]