Answer:
[tex]A = 598207\ cents[/tex]
Explanation:
Given
[tex]Principal, P = \$5000[/tex]
[tex]Rate, r = 3\%[/tex]
[tex]Time, t = 6\ years[/tex]
[tex]n = Quarterly =4[/tex]
Required
Determine the total amount
This can be calculated by using:
[tex]A = P(1 + \frac{r}{n})^{nt}[/tex]
Substitute [tex]P = \$5000[/tex] [tex]r = 3\%[/tex] [tex]t = 6\ years[/tex] [tex]n =4[/tex]
So;
[tex]A = 5000 * (1 + \frac{3\%}{4})^{4* 6}[/tex]
Convert percentage to decimal
[tex]A = 5000 * (1 + \frac{0.03}{4})^{4* 6}[/tex]
[tex]A = 5000 * (1 + 0.0075)^{4* 6}[/tex]
[tex]A = 5000 * (1.0075)^{4* 6}[/tex]
[tex]A = 5000 * (1.0075)^{24}[/tex]
[tex]A = 5000 * 1.19641352939[/tex]
[tex]A = 5982.06764695[/tex]
Since 1 dollar is equivalent to cents, then the above in cents is;
[tex]A = 5982.06764695 * 100[/tex]
[tex]A = 598206.764695[/tex]
[tex]A = 598207\ cents[/tex] --- Approximated