Respuesta :

Answer:

The maximum rate of change of f at (0, 9) is 72 and the direction of the vector is  [tex]\mathbf{\hat i}[/tex]

Step-by-step explanation:

Given that:

F(x,y) = 8 sin (xy) at (0,9)

The maximum rate of change f(x,y) occurs in the direction of gradient of f which can be estimated as follows;

[tex]\overline V f (x,y) = \begin {bmatrix} \dfrac{\partial }{\partial x } (x,y) \hat i \ + \ \dfrac{\partial }{\partial y } (x,y) \hat j \end {bmatrix}[/tex]

[tex]\overline V f (x,y) = \begin {bmatrix} \dfrac{\partial }{\partial x } (8 \ sin (xy) \hat i \ + \ \dfrac{\partial }{\partial y } (8 \ sin (xy) \hat j \end {bmatrix}[/tex]

[tex]\overline V f (x,y) = \begin {bmatrix} (8y \ cos (xy) \hat i \ + \ (8x \ cos (xy) \hat j \end {bmatrix}[/tex]

[tex]| \overline V f (0,9) |= \begin {vmatrix} 72 \hat i + 0 \end {vmatrix}[/tex]

[tex]\mathbf{| \overline V f (0,9) |= 72}[/tex]

We can conclude that the  maximum rate of change of f at (0, 9) is 72 and the direction of the vector is  [tex]\mathbf{\hat i}[/tex]