contestada

A single-slit diffraction pattern is formed on a distant screen. Assuming the angles involved are small, by what factor will the width of the central bright spot on the screen change if the slit width is doubled

Respuesta :

Answer:

y ’= y / 2

thus when the slit width is doubled the pattern width is halved

Explanation:

The diffraction of a slit is given by the expressions

          a sin θ = m λ

where a is the width of the slit, λ is the wavelength and m is an integer that determines the order of diffraction.

          sin θ = m λ / a

If this equation

          a ’= 2 a

we substitute

          2 a sin θ'= m λ

          sin θ'= (m λ / a)  1/2

          sin θ ’= sin θ / 2

           

We can use trigonometry to find the width

         tan θ = y / L

as the angle is small

         tan θ = sin θ / cos θ = sin θ

         sin θ = y / L  

         

we substitute

        y ’/ L = y/L   1/2

        y ’= y / 2

thus when the slit width is doubled the pattern width is halved