Respuesta :

Answer:  see proof below

Step-by-step explanation:

Use the following when solving the proof...

Double Angle Identity: cos2A = 1 - 2sin²B

Pythagorean Identity: cos²A + sin²A = 1

note that A can be replaced with B

Proof from LHS → RHS

Given:                            cos²A + sin²A · cos2B

Double Angle Identity: cos²A + sin²A(1 - 2sin²B)

Distribute:                      cos²A + sin²A - 2sin²A·sin²B

Pythagorean Identity:                        1 - 2sin²A·sin²B

Pythagorean Identity:   cos²B + sin²B - 2sin²A·sin²B

Factor:                           cos²A + sin²B(1 - 2sin²A)

Double Angle Identity: cos²B + sin²B · cos2A

cos²B + sin²B · cos2A = cos²B + sin²B · cos2A  [tex]\checkmark[/tex]