A rock has mass 1.80 kg. When the rock is suspended from the lower end of a string and totally immersed in water, the tension in the string is 10.8 N . What is the smallest density of a liquid in which the rock will float?

Respuesta :

Answer:

The density is  [tex]\rho_z = 2544 \ kg /m^3[/tex]

Explanation:

From the question we are told that

    The mass of the rock is  [tex]m_r = 1.80 \ kg[/tex]

     The  tension on the string is  [tex]T = 10.8 \ N[/tex]

Generally the weight of the rock is  

        [tex]W = m * g[/tex]

=>     [tex]W = 1.80 * 9.8[/tex]

=>   [tex]W = 17.64 \ N[/tex]

Now the upward force(buoyant force) acting on the rock  is mathematically evaluated as  

        [tex]F_f = W - T[/tex]

substituting values

       [tex]F_f = 17.64 - 10.8[/tex]

      [tex]F_f = 6.84 \ N[/tex]

This buoyant force is mathematically represented as

      [tex]F_f = \rho * g * V[/tex]

Here  [tex]\rho[/tex] is the density of water and it value is [tex]\rho = 1000\ kg/m^3[/tex]

 So

         [tex]V = \frac{F_f}{ \rho * g }[/tex]

        [tex]V = \frac{6.84}{ 1000 * 9.8 }[/tex]

        [tex]V = 0.000698 \ m^3[/tex]

Now for this rock to flow the upward force (buoyant force) must be equal to the length

      [tex]F_f = W[/tex]

      [tex]\rho_z * g * V = W[/tex]

Here z is smallest density of a liquid in which the rock will float

=>     [tex]\rho_z = \frac{W}{ g * V}[/tex]

=>   [tex]\rho_z = \frac{17.64}{ 0.000698 * 9.8}[/tex]

=>   [tex]\rho_z = 2544 \ kg /m^3[/tex]