Use a​ t-test to test the claim about the population mean at the given level of significance using the given sample statistics. Assume the population is normally distributed.
Claim: μ ≥8 300, α = 0.10
Sample statistics: x = 8000, s = 440, n = 24
A. What are the null and alternative hypotheses?
B. What is the value of the standardized test statistic?
C. What is the p-value?
D. Decide whether to reject or fail to reject the null hypothesis.

Respuesta :

Answer:

A

     

The null hypothesis is  [tex]H_o : \mu \ge 8300[/tex]

The  alternative hypothesis is  [tex]H_a : \mu < 8300[/tex]

B

  [tex]t = -3.34[/tex]

C

 [tex]p-value = P(t< -3.34) = 0.00041889[/tex]

D

 reject the null hypothesis  

Step-by-step explanation:

From the question we are told that

    The population mean is  [tex]\mu = 8300[/tex]

    The sample mean is [tex]\ = x = 8000[/tex]

     The  standard deviation is [tex]s = 440[/tex]

      The sample size is  [tex]n = 24[/tex]

       The  level of significance is  [tex]\alpha = 0.01[/tex]

   

The null hypothesis is  [tex]H_o : \mu \ge 8300[/tex]

The  alternative hypothesis is  [tex]H_a : \mu < 8300[/tex]

 The  test statistic is mathematically evaluated as

                     [tex]t = \frac{\= x - \mu }{ \frac{s}{\sqrt{n} } }[/tex]

=>                  [tex]t = \frac{8000- 8300 }{ \frac{440}{\sqrt{24} } }[/tex]

=>                    [tex]t = -3.34[/tex]

The p-value is obtained from the z -table ( reference calculator dot net ) , the value is

         [tex]p-value = P(t< -3.34) = 0.00041889[/tex]

Looking at the values of  [tex]p-value and \ \alpha[/tex] we see that  [tex]p-value < \alpha[/tex] Hence we reject the null hypothesis