Answer and Step-by-step explanation:
The computation of points on the ellipse is shown below:-
Distance between any point on the ellipse
[tex](3 cos t, sin t) and (\frac{4}{3},0) is\\\\ d = \sqrt{(3 cos\ t - \frac{4}{3}^2) } + (sin\ t - 0)^2\\\\ d^2 = (3 cos\ t - \frac{4}{3})^2 + sin^2 t[/tex]
To minimize
[tex]d^2, set\ f' (t) = 0\\\\2(3cos\ t - \frac{x=4}{3} ).3(-sin\ t) + 2sin\ t\ cos\ t = 0\\\\ 8 sin\ t - 16 sin\ t\ cos\ t = 0\\\\ 8 sin\ t (1 - 2 cos\ t) = 0\\\\ sin\ t = 0, cos\ t = \frac{1}{2} \\\\ t= 0, \ 0, \pi,2\pi,\frac{\pi}{3} , \frac{5\pi}{3}[/tex]
Now we create a table by applying the critical points which are shown below:
t [tex]d^{2} = (3\ cos t - \frac{4}{3})^{2} + sin^{2}t[/tex]
0 [tex]\frac{25}{9}[/tex]
[tex]\pi[/tex] [tex]\frac{169}{9}[/tex]
[tex]2\pi[/tex] [tex]\frac{25}{9}[/tex]
[tex]\frac{\pi}{3}[/tex] [tex]\frac{7}{9}[/tex]
[tex]\frac{5\pi}{3}[/tex] [tex]\frac{7}{9}[/tex]
When t = [tex]\frac{\pi}{3}[/tex], x is [tex]\frac{3}{2}[/tex] and y is [tex]\frac{\sqrt{3} }{2}[/tex]. So, the required points are [tex](\frac{3}{2},\frac{\sqrt{3} }{2})[/tex]
When t = [tex]\frac{5\pi}{3}[/tex], x is [tex]\frac{3}{2}[/tex] and y is [tex]\frac{-\sqrt{3} }{2}[/tex]. So, the required points are [tex](\frac{3}{2},\frac{-\sqrt{3} }{2})[/tex]