contestada

In a local university, 10% of the students live in the dormitories. A random sample of 100 students is selected for a particular study. Carry answer to the nearest ten-thousandths. (Bonus Question)
a. What is the probability that the sample proportion (the proportion living in the dormitories) is between 0.172 and 0.178?
b. What is the probability that the sample proportion (the proportion living in the dormitories) is greater than 0.025?

Respuesta :

Answer:

a

  [tex]P( 0.172 < X < 0.178 ) = 0.00354[/tex]  

b

  [tex]P( X >0.025 ) = 0.99379[/tex]

Step-by-step explanation:

From the question we are told that

   The  population proportion is  [tex]p = 0.10[/tex]

    The sample size is  [tex]n = 100[/tex]

Generally the standard error is mathematically represented as

       [tex]SE = \sqrt{\frac{ p (1 - p )}{n} }[/tex]

=>   [tex]SE = \sqrt{\frac{ 0.10 (1 - 0.10 )}{100} }[/tex]

=>   [tex]SE =0.03[/tex]

The sample proportion (the proportion living in the dormitories) is between 0.172 and 0.178

   [tex]P( 0.172 < X < 0.178 ) = P (\frac{ 0.172 - 0.10}{0.03} < \frac{ X - 0.10}{SE} < \frac{ 0.178 - 0.10}{0.03} )[/tex]

  Generally  [tex]\frac{ X - 0.10}{SE} = Z (The \ standardized \ value \ of X )[/tex]

    [tex]P( 0.172 < X < 0.178 ) = P (\frac{ 0.172 - 0.10}{0.03} <Z < \frac{ 0.178 - 0.10}{0.03} )[/tex]

    [tex]P( 0.172 < X < 0.178 ) = P (2.4 <Z < 2.6 )[/tex]

   [tex]P( 0.172 < X < 0.178 ) = P(Z < 2.6 ) - P (Z < 2.4 )[/tex]

From the z-table  

      [tex]P(Z < 2.6 ) = 0.99534[/tex]

     [tex]P(Z < 2.4 ) = 0.9918[/tex]

[tex]P( 0.172 < X < 0.178 ) =0.99534 - 0.9918[/tex]  

 [tex]P( 0.172 < X < 0.178 ) = 0.00354[/tex]  

the probability that the sample proportion (the proportion living in the dormitories) is greater than 0.025 is mathematically evaluated as

        [tex]P( X >0.025 ) = P (\frac{ X - 0.10}{SE} > \frac{ 0.0025- 0.10}{0.03} )[/tex]

        [tex]P( X >0.025 ) = P (Z > -2.5 )[/tex]

From the z-table  

        [tex]P (Z > -2.5 ) = 0.99379[/tex]

Thus

      [tex]P( X >0.025 ) = P (Z > -2.5 ) = 0.99379[/tex]