Respuesta :
Answer:
a
[tex]P( 0.172 < X < 0.178 ) = 0.00354[/tex]
b
[tex]P( X >0.025 ) = 0.99379[/tex]
Step-by-step explanation:
From the question we are told that
The population proportion is [tex]p = 0.10[/tex]
The sample size is [tex]n = 100[/tex]
Generally the standard error is mathematically represented as
[tex]SE = \sqrt{\frac{ p (1 - p )}{n} }[/tex]
=> [tex]SE = \sqrt{\frac{ 0.10 (1 - 0.10 )}{100} }[/tex]
=> [tex]SE =0.03[/tex]
The sample proportion (the proportion living in the dormitories) is between 0.172 and 0.178
[tex]P( 0.172 < X < 0.178 ) = P (\frac{ 0.172 - 0.10}{0.03} < \frac{ X - 0.10}{SE} < \frac{ 0.178 - 0.10}{0.03} )[/tex]
Generally [tex]\frac{ X - 0.10}{SE} = Z (The \ standardized \ value \ of X )[/tex]
[tex]P( 0.172 < X < 0.178 ) = P (\frac{ 0.172 - 0.10}{0.03} <Z < \frac{ 0.178 - 0.10}{0.03} )[/tex]
[tex]P( 0.172 < X < 0.178 ) = P (2.4 <Z < 2.6 )[/tex]
[tex]P( 0.172 < X < 0.178 ) = P(Z < 2.6 ) - P (Z < 2.4 )[/tex]
From the z-table
[tex]P(Z < 2.6 ) = 0.99534[/tex]
[tex]P(Z < 2.4 ) = 0.9918[/tex]
[tex]P( 0.172 < X < 0.178 ) =0.99534 - 0.9918[/tex]
[tex]P( 0.172 < X < 0.178 ) = 0.00354[/tex]
the probability that the sample proportion (the proportion living in the dormitories) is greater than 0.025 is mathematically evaluated as
[tex]P( X >0.025 ) = P (\frac{ X - 0.10}{SE} > \frac{ 0.0025- 0.10}{0.03} )[/tex]
[tex]P( X >0.025 ) = P (Z > -2.5 )[/tex]
From the z-table
[tex]P (Z > -2.5 ) = 0.99379[/tex]
Thus
[tex]P( X >0.025 ) = P (Z > -2.5 ) = 0.99379[/tex]