Answer:
A
The correct option is B
B
[tex]t = 0.6093[/tex]
C
[tex]p-value = 0.27116[/tex]
D
The correct option is D
Step-by-step explanation:
From the question we are told that
The sample size is [tex]n = 232[/tex]
The number that developed nausea is X = 50
The population proportion is p = 0.20
The null hypothesis is [tex]H_o : p = 0.20[/tex]
The alternative hypothesis is [tex]H_a : p > 0.20[/tex]
Generally the sample proportion is mathematically represented as
[tex]\r p = \frac{50}{232}[/tex]
[tex]\r p = 0.216[/tex]
Generally the test statistics is mathematically represented as
=> [tex]t = \frac{\r p - p }{ \sqrt{ \frac{p(1- p )}{n} } }[/tex]
=> [tex]t = \frac{ 0.216 - 0.20 }{ \sqrt{ \frac{ 0.20 (1- 0.20 )}{ 232} } }[/tex]
=> [tex]t = 0.6093[/tex]
The p-value obtained from the z-table is
[tex]p-value = P(Z > 0.6093) = 0.27116[/tex]
Given that the [tex]p-value > \alpha[/tex] then we fail to reject the null hypothesis