Decide whether the normal sampling distribution can be used. If it can be​ used, test the claim about the population proportion p at the given level of significance using the given sample statistics.

Claim: p>0.12; α=0.05; Sample statistics: Modifying above p with caret equals 0.08, n is equal to 250

Respuesta :

Answer:

There is no sufficient evidence to support the claim

Step-by-step explanation:

From the question we are told that

     The level of significance is  [tex]\alpha = 0.05[/tex]

     The  sample proportion is  [tex]\r p = 0.08[/tex]

     The  sample size is  [tex]n = 250[/tex]

     

Generally for normal sampling distribution can  be used

     [tex]n * p > 5[/tex]

So  

     [tex]n* p = 250 * 0.12 = 30[/tex]

Since  

     [tex]n * p > 5[/tex] then  normal sampling distribution can  be used

The null hypothesis is  [tex]H_o : p = 0.12[/tex]

  The alternative hypothesis is  [tex]H_a : p > 0.12[/tex]

The  test statistic is evaluated as

            [tex]t = \frac{\r p - p }{ \sqrt{ \frac{p(1- p)}{n} } }[/tex]

substituting values

            [tex]t = \frac{0.08 - 0.12 }{ \sqrt{ \frac{0.12 (1- 0.12)}{250 } } }[/tex]

            [tex]t = -1.946[/tex]

The  p-value is obtained from the z  table and the value is

        [tex]p-value = P(t > -1.9462) =0.97512[/tex]

Since the [tex]p-value > \alpha[/tex]

    Then we fail to reject the null hypothesis

Hence it means there is no sufficient evidence to support the claim