Monochromatic light falls on two very narrow slits 0.047 mm apart. Successive fringes on a screen 6.60 m away are 8.9 cm apart near the center of the pattern.
Determine the wavelength and frequency of the light.

Respuesta :

Answer::

   [tex]\lambda = 634 nm[/tex]

  [tex]f = 4.73 *10^{14} \ Hz[/tex]

Explanation:

From the question we are told that

      The  distance of separation is  [tex]d = 0.047 \ mm = 0.047 *10^{-3} \ m[/tex]

       The  distance of the screen is  [tex]D = 6.60 \ m[/tex]

      The  width of the fringe is [tex]y = 8.9 \ cm = 0.089 \ m[/tex]

     

Generally the width of the width of the fringes is mathematically represented as

          [tex]y = \frac{\lambda * D }{d }[/tex]

=>       [tex]\lambda = \frac{y * d }{D }[/tex]

=>      [tex]\lambda = \frac{ 0.089 * (0.047 *10^{-3}) }{6.60 }[/tex]

=>    [tex]\lambda = 634 *10^{-9}[/tex]

=>  [tex]\lambda = 634 nm[/tex]

Generally the speed of light is mathematically represented as

         [tex]c = f * \lambda[/tex]

=>       [tex]f= \frac{ c}{\lambda }[/tex]

=>         [tex]f= \frac{ 3.0 *10^{8}}{634 *10^{-9}}[/tex]

=>     [tex]f = 4.73 *10^{14} \ Hz[/tex]